NG-DBSCAN: Scalable Density-Based Clustering for Arbitrary Data

نویسندگان

  • Alessandro Lulli
  • Matteo Dell'Amico
  • Pietro Michiardi
  • Laura Ricci
چکیده

We present NG-DBSCAN, an approximate density-based clustering algorithm that operates on arbitrary data and any symmetric distance measure. The distributed design of our algorithm makes it scalable to very large datasets; its approximate nature makes it fast, yet capable of producing high quality clustering results. We provide a detailed overview of the steps of NG-DBSCAN, together with their analysis. Our results, obtained through an extensive experimental campaign with real and synthetic data, substantiate our claims about NG-DBSCAN’s performance and scalability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی مشکلات الگوریتم خوشه بندی DBSCAN و مروری بر بهبودهای ارائه‌شده برای آن

Clustering is an important knowledge discovery technique in the database. Density-based clustering algorithms are one of the main methods for clustering in data mining. These algorithms have some special features including being independent from the shape of the clusters, highly understandable and ease of use. DBSCAN is a base algorithm for density-based clustering algorithms. DBSCAN is able to...

متن کامل

Improvement of density-based clustering algorithm using modifying the density definitions and input parameter

Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...

متن کامل

Scalable Varied Density Clustering Algorithm for Large Datasets

Finding clusters in data is a challenging problem especially when the clusters are being of widely varied shapes, sizes, and densities. Herein a new scalable clustering technique which addresses all these issues is proposed. In data mining, the purpose of data clustering is to identify useful patterns in the underlying dataset. Within the last several years, many clustering algorithms have been...

متن کامل

A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise

Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algo...

متن کامل

DDCT: Detecting Density Differences Using A Novel Clustering Technique

Data clustering plays an important role in various fields. Data clustering approaches have been presented in recent decades. Identifying clusters with widely differing shapes, sizes and densities in the presence of noise and outliers is challenging. Many density-based clustering algorithms, such as DBSCAN, can locate arbitrary shapes, sizes and filter noise, but cannot identify clusters based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PVLDB

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016